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1 Introduction

Autonomous planetary exploration requires ad-
vanced perception systems to navigate and analyze com-
plex terrains effectively. Semantic segmentation plays
a crucial role in terrain classification by distinguishing
different surface elements. This project focuses on re-
searching various methods for semantic segmentation and
dataset integration to improve Mars terrain analysis. Mul-
tiple approaches, including dataset integration and state-
of-the-art segmentation models, were explored before fi-
nalizing DeepLabV3 as the selected model for experimen-
tation.

2 Research

The research phase of this project involved exploring
multiple technologies relevant to semantic segmentation
and Mars terrain analysis.

2.1 Infinigen

One of the key technologies investigated was In-
finigen, a procedural generator of 3D scenes. Infinigen
is designed to generate high-quality, diverse 3D training
data optimized for computer vision applications. Built on
Blender, it allows for the creation of realistic Mars-like
terrains and features that can be used to augment existing
datasets. In this project, our original plan was to utilize
Infinigen to generate synthetic Mars-like environments,
which were then used for training and evaluating semantic
segmentation models. By incorporating procedurally gen-
erated terrains, the dataset diversity was significantly en-
hanced, helping the models generalize better to real-world
Martian landscapes. The ability to create customizable
terrains also allowed for targeted testing of model per-
formance in specific conditions such as rocky surfaces,
sand dunes, and cratered regions. This approach provided
a flexible and scalable way to simulate diverse Martian
landscapes, ensuring robust model evaluation across vari-
ous environmental challenges.

Figure 1: 3D prototype scene generated by Infinigen and
Blender

2.2 COLMAP

Another critical tool explored was COLMAP, an
end-to-end structure-from-motion (SfM) and multi-view
stereo (MVS) pipeline. The primary purpose of using
COLMAP in this project was to reconstruct 3D mod-
els from image frames, providing a deeper understand-
ing of terrain structures and enhancing dataset generation
for training semantic segmentation models. By leverag-
ing COLMAP’s SfM capabilities, we aimed to extract 3D
information from 2D images, which could be used to im-
prove model generalization by incorporating depth and
structural cues into the dataset.

In our experiment, we used COLMAP to generate 3D
maps from two different sets of image frames. The first
set contained images of a residence, serving as a baseline
test to verify the accuracy of the reconstruction process.
The resulting 3D model of the residence demonstrated
COLMAP’s effectiveness in generating structured and
well-defined scenes with clear geometric features. The
second set consisted of Mars-like terrain images, aimed at
assessing COLMAP’s ability to reconstruct complex, un-
structured surfaces characteristic of planetary landscapes.
However, the reconstruction proved to be more challeng-
ing due to the relatively uniform and featureless nature of
the Martian surface. The lack of distinct feature points in
sandy and rocky regions led to difficulties in generating a
coherent 3D structure, highlighting the limitations of tra-
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Figure 2: COLMAP experiment results

ditional SfM approaches in environments with minimal
texture variation. This experiment emphasized the im-
portance of surface features in COLMAP’s reconstruction
process and suggested the potential need for additional
preprocessing techniques, such as contrast enhancement
or feature augmentation, to improve results on planetary
terrains.

2.3 State-of-the-art models

During our research, we evaluated the Segment
Anything Model (SAM) as a potential solution for se-
mantic segmentation. While SAM has demonstrated
strong general-purpose segmentation capabilities, its per-
formance on Mars terrain imagery revealed several lim-
itations. The model struggled with distinguishing small
objects, often missing or misclassifying features due to
low contrast or surrounding noise. Another challenge was
its limited understanding of contextual relationships be-
tween terrain features, making it difficult to differenti-
ate foreground from background when boundaries were
subtle. Furthermore, SAM is primarily designed to gen-
erate segmentation masks rather than assigning specific

class labels, making it difficult to compare its outputs with
the structured ground truth data available in our dataset.
While SAM performs well in general object segmenta-
tion, it does not always achieve high accuracy in semantic
segmentation tasks that require precise categorization of
visually similar terrain elements. Given these constraints,
SAM was not incorporated into our final approach, as
DeepLabV3 demonstrated better adaptability and accu-
racy for Mars-specific segmentation tasks.

(a) Input

(b) Output

Figure 3: SAM Results



2.4 Combining datasets

Another focus was combining datasets with new
union labels to enhance segmentation accuracy. The
datasets examined included MarsData-V2, SS5Mars,
AI4MARS, GOOSE (the German Outdoor and Offroad
Dataset), RELLIS-3D, and the Artificial Lunar Landscape
Dataset. By analyzing these datasets, we aimed to develop
a robust dataset integration strategy for improved model
training. However, this methodology was abandoned due
to several difficulties encountered, such as datasets con-
taining incorrect or missing labels, which hindered the in-
tegration process and affected the overall accuracy.

3 Methodology

Our initial strategy involved integrating multiple
datasets to create a diverse and comprehensive training set
for semantic segmentation. To ensure consistency across
the datasets, we applied various image processing tech-
niques such as normalization, augmentation, and color
correction. We tested different architectures, including
transformer-based models and convolutional neural net-
works (CNNs), before determining that DeepLabV3 was
the most suitable model for our task. The implementation
was based on the DeepLabV3FineTuning repository from
GitHub. As noted earlier, the attempt to combine datasets
was ultimately abandoned due to the inconsistencies and
challenges it presented, leading us to focus exclusively on
the S5Mars dataset.

The DeepLabV3 model was trained for 20 epochs
with a batch size of 16, using CrossEntropyLoss as the
loss function. The Adam optimizer was selected for its
efficiency in optimizing training performance. We fine-
tuned DeepLabV3 on the S5Mars dataset and explored ad-
ditional preprocessing techniques to further improve seg-
mentation accuracy. Extensive experimentation was car-
ried out to assess the impact of various hyperparameter
settings, loss functions, and data augmentation strategies.
Automated evaluation metrics were integrated throughout
the training process to track performance improvements
across multiple iterations.

4 Dataset Details

The S5Mars dataset served as the primary dataset for
experimentation. It consists of 6,000 images, with 4,800
designated for training and 1,200 for validation. Each im-
age is paired with a ground truth segmentation mask, clas-
sifying pixels into ten categories: hole, trace, rover, rock,
bedrock, sand, soil, ridge, sky, and NULL. Extensive pre-

processing steps were conducted, including normalization
and data augmentation techniques such as flipping and ro-
tation to improve generalization. To ensure compatibility
with different models, color-mapped segmentation labels
were converted into numerical class indices.

Table 1: Color Map

RGB Value Color Sample D Class Name
[0, 64, 0] 255 NULL
[128, 0, 0] 0 sky
[0, 128, 0] 1 ridge
[128, 128, 0] 2 soil

3 sand
[128, 0, 128] 4 bedrock
[0, 128, 128] 5 rock
[128, 128, 128] 6 rover
[64, 0, 0] 7 trace

8 hole

5 Results

The highest validation accuracy achieved by the
model was around 0.74, which is a promising result given
the inherent challenges of segmenting Martian terrain.
The low contrast and similar textures across different sur-
face elements make it difficult to differentiate between
various features, complicating the segmentation process.
By analyzing the prediction images, we observe that cer-
tain classes did not perform as well as expected, particu-
larly rover [128, 128, 128], trace [64, 0, 0], and hole [0, 0,
0]. The model often misclassified these regions, mapping
them to colors belonging to other classes. This issue may
be partially due to dataset imbalance, as these classes are
underrepresented in the training data. The model’s per-
formance was also significantly influenced by the qual-
ity of the dataset annotations, suggesting that improve-
ments in labeling accuracy and consistency could have a
substantial impact on the results. Furthermore, expand-
ing the dataset size could provide more diverse training
examples, potentially leading to enhanced model perfor-
mance. While DeepLabV3 served as a solid baseline for
the segmentation task, exploring more advanced model ar-
chitectures, such as newer versions or other specialized
segmentation models, along with improved dataset inte-
gration techniques, could lead to further gains in segmen-
tation accuracy.

Figure 4: Accuracy and Loss



6 Future Directions

Future research will focus on improving dataset qual-
ity and expanding model experimentation. This will in-
clude curating more high-quality images and enhancing
labels through human annotation. Model optimization
will explore cutting-edge architectures, such as vision
transformers and multi-scale segmentation techniques.
Additionally, integrating multiple datasets with consistent
labeling schemes will be a key priority to boost model
generalization. Ultimately, deployment on real-world
rover systems and in simulated Martian environments will
help validate the practical applications of these models in
planetary exploration.

7 Conclusion

This research investigates various approaches to se-
mantic segmentation for Mars terrain analysis, with an
emphasis on dataset integration and model selection.
While DeepLabV3 was chosen for experimentation, addi-
tional work is required to improve segmentation accuracy
through better datasets and more advanced architectures.
Moving forward, efforts will concentrate on dataset re-
finement, model optimization, and real-world deployment
to push the boundaries of autonomous planetary explo-
ration.

Figure 5: DeepLabV3 Results
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